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Existing Methods to determine protein concentration and 
aggregation of proteins in cells

1. Calibration of the free fluorophore based on intensity

However, it doesn’t give you the size distribution
Only concentration is given

INTENSITY

31,250counts/sec

93,750 counts/sec

If “free” EGFP at 10nM gave  30,000 
counts/sec then the conclusion would 
be that :           

=10nM
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2. Förster resonance energy transfer (FRET)

This method is very sensitive to detect the 
formation of pairs.



3. Image correlation Spectroscopy (ICS)

However, the events must be slow >1sec (no movement during one frame) 
and the aggregates must be large.                               Petersen and Wiseman:Biophys J. 1999



Purpose: Provide a pixel resolution map of molecular number and 
aggregation in cells 

Method: First and second moment of the fluorescence intensity distribution 
at each pixel

Source: Raster scanned image obtained with laser scanning microscopes
TIRF with fast cameras
Spinning disk confocal microscope

Output: The N and B maps, B vs intensity 2D histogram

Tools: Cursor selection of pixel with similar brightness
Quantitative analysis of center and std dev of the e and n 
distribution
Tools for calibration of analog detectors

Tutorials: mathematical background, data import, analysis examples (our web site)

The Number and Brightness (N&B) analysis



• Given two series of equal average, the larger is the variance, the less 
molecules contribute to the average. The ratio of the square of the 
average intensity (<k>2) to the variance (2) is proportional to the 
average number of particles <N>.

* Originally developed by Qian and Elson (1990) for solution measurements.
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How to distinguish pixels with many dim molecules from pixels with 
few bright molecules?



This analysis provides a map of <N> and brightness (B) for every pixel in the image.  The units of 
brightness are related to the pixel dwell time and they are “counts/dwell time/molecule”.  
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2 = Variance
<k>= Average counts
N   = Apparent number of molecules
B   = Apparent molecular brightness
K   = # of frames analyzed
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Calculating protein aggregates from images



To increase the apparent brightness we could increase the dwell time, since the 
brightness is measured in counts/dwell time/molecule.

Increasing the dwell time decreases the amplitude of the fluctuation. 
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What contributes to the variance?
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The measured variance contains two terms,  the variance due to the particle 
number fluctuation and the variance due to the detector count statistics noise

These two terms have different dependence on the molecular brightness:

Both depend on the intrinsic brightness and the number of molecules.  We can 
invert the equations and obtain n and 

(for the photon counting detector)

nn
22  Variance due to particle number fluctuations

nd  2Variance due to detector shot noise

n is the true number of molecules
is the true molecular brightness
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How to Calculate n and 

This ratio identifies pixels of different brightness due to mobile particles.  

The “true” number of molecules n and the “true” molecular brightness for 
mobile particles  can be obtained from
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If there are regions of immobile particles, n cannot be calculated because for 
the immobile fraction the variance is = <k>. For this reason, several plots are 
offered to help the operator to identify regions of mobile and immobile 
particles.   Particularly useful is the plot of NvsB.
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Identification of mobile and immobile molecules

If we change the laser power, a plot of the ratio variance/intensity vs 
intensity can distinguish the mobile from immobile fraction.  The two 
curves are for different pixel integration times.
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The effect of the immobile part: with photon counting detectors
Fluorescent beads in a sea of 100nM Fluorescein.
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Brightness and number of molecules can be measured independently
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What are the parameters for 
analog systems? 



Detector Noise in Analog Systems

Additional considerations with analog detection systems:
• digital levels are recorded (instead of photon counts)
• an offset is typically present 
• additional detector variance at low currents

offsetdnk  
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S = digital levels per photon

doffset = analog offset

= variance of analog detector
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If we fix the PMT settings (voltage and gain), then S and 0
2

should not change and need only be determined once.
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  vs laser
y = 7E-05x + 1.1489
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Solution experiments: using analog detectors
Recovery of n and  in the analog system for 20nM EGFP in solution

In the analog system, the recovery of relative values is good, for absolute 
values the calibration is more problematic.  The best obtained so far is 
within a factor of 2 

Laser power Laser power
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Summary of N&B

• N&B distinguishes between number of molecules and molecular 
brightness in the same pixel

• The acquisition for the N&B can be done with a commercial Laser 
Scanning Microscope (LSM) and the same data used for RICS can 
be used to map N and B. 

• The Immobile fraction can be separated since it has a Brightness
value =1

• The N&B analysis of paxillin at adhesions shows large aggregates
of protein during disassembly.
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